Bounded Positive Solutions for a Third Order Discrete Equation
نویسندگان
چکیده
منابع مشابه
Uncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation
In this paper we consider the second order nonlinear neutral delay partial difference equation $Delta_nDelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$Under suitable conditions, by making use of the Banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...
متن کاملuncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation
in this paper we consider the second order nonlinear neutral delay partial difference equation $delta_ndelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$under suitable conditions, by making use of the banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...
متن کاملExistence of positive solutions of a third order nonlinear differential equation with positive and negative terms
متن کامل
Existence of Positive Periodic Solutions for a Third-order Delay Differential Equation
In this paper, the following third-order nonlinear delay differential equation with periodic coefficients x′′′(t) + p(t)x′′(t) + q(t)x′(t) + r(t)x(t) = f (t, x (t) , x(t− τ(t))) + c(t)x′(t− τ(t)), is considered. By employing Green’s function and Krasnoselskii’s fixed point theorem, we state and prove the existence of positive periodic solutions to the third-order delay differential equation.
متن کاملPositive Solutions for a Singular Third Order Boundary Value Problem
The existence of positive solutions is shown for the third order boundary value problem, u′′′ = f (x,u),0 < x < 1, u(0) = u(1) = u′′(1) = 0, where f (x,y) is singular at x = 0 , x = 1 , y = 0 , and may be singular at y = ∞. The method involves application of a fixed point theorem for operators that are decreasing with respect to a cone. Mathematics subject classification (2010): 34B16, 34B18.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2012
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2012/237036